
UTF-8 and Unicode FAQ for

Unix/Linux

by Markus Kuhn

This text is a very comprehensive one-stop information

resource on how you can use Unicode/UTF-8 on POSIX

systems (Linux, Unix). You will find here both introductory

information for every user, as well as detailed references

for the experienced developer.

Unicode has started to replace ASCII, ISO 8859 and EUC at

all levels. It enables users to handle not only practically

any script and language used on this planet, it also

supports a comprehensive set of mathematical and

technical symbols to simplify scientific information

exchange.

With the UTF-8 encoding, Unicode can be used in a

convenient and backwards compatible way in

environments that were designed entirely around ASCII,

like Unix. UTF-8 is the way in which Unicode is used under

Unix, Linux, and similar systems. It is now time to make

sure that you are well familiar with it and that your

software supportsUTF-8 smoothly.

Contents

• What are UCS and ISO 10646?

• What are combining characters?

• What are UCS implementation levels?

• Has UCS been adopted as a national standard?

• What is Unicode?

• So what is the difference between Unicode and ISO 10646?

• What is UTF-8?

• Who invented UTF-8?

• Where do I find nice UTF-8 example files?

• What different encodings are there?

• What programming languages support Unicode?

• How should Unicode be used under Linux?

• How do I have to modify my software?

• C support for Unicode and UTF-8

• How should the UTF-8 mode be activated?

• How do I get a UTF-8 version of xterm?

• How much of Unicode does xterm support?

• Where do I find ISO 10646-1 X11 fonts?

• What are the issues related to UTF-8 terminal emulators?

• What UTF-8 enabled applications are available?[UPDATED]

• What patches to improve UTF-8 support are available?

• Are there free libraries for dealing with Unicode available?

• What is the status of Unicode support for various X widget

libraries?

• What packages with UTF-8 support are currently under

development?

• How does UTF-8 support work under Solaris?

• Can I use UTF-8 on the Web?

• How are PostScript glyph names related to UCS codes?

• Are there any well-defined UCS subsets?

• What issues are there to consider when converting

encodings

• Is X11 ready for Unicode?

• What are useful Perl one-liners for working with UTF-8?

• How can I enter Unicode characters?

• Are there any good mailing lists on these issues?

• Further references

What are UCS and ISO 10646?

The international standard ISO 10646 defines the Universal

Character Set (UCS). UCS is a superset of all other character

set standards. It guarantees round-trip compatibility to other

character sets. This means simply that no information is lost if

you convert any text string to UCS and then back to its original

encoding.

UCS contains the characters required to represent practically all

known languages. This includes not only the Latin, Greek, Cyrillic,

Hebrew, Arabic, Armenian, and Georgian scripts, but also

Chinese, Japanese and Korean Han ideographs as well as scripts

such as Hiragana, Katakana, Hangul, Devanagari, Bengali,

Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada, Malayalam,

Thai, Lao, Khmer, Bopomofo, Tibetan, Runic, Ethiopic, Canadian

Syllabics, Cherokee, Mongolian, Ogham, Myanmar, Sinhala,

Thaana, Yi, and others. For scripts not yet covered, research on

how to best encode them for computer usage is still going on and

they will be added eventually. This includes not only historic

scripts such as Cuneiform, Hieroglyphs and various Indo-

European notations, but even some selected artistic scripts such

as Tolkien’s Tengwar and Cirth. UCS also covers a large number

of graphical, typographical, mathematical and scientific symbols,

including those provided by TeX, PostScript, APL, the

International Phonetic Alphabet(IPA), MS-DOS, MS-Windows,

Macintosh, OCR fonts, as well as many word processing and

publishing systems. The standard continues to be maintained and

updated. Ever more exotic and specialized symbols and

characters will be added for many years to come.

ISO 10646 originally defined a 31-bit character set. The subsets

of216 characters where the elements differ (in a 32-bitinteger

representation) only in the 16 least-significant bits are called the

planes of UCS.

The most commonly used characters, including all those found in

major older encoding standards, have been placed into the first

plane(0x0000 to 0xFFFD), which is called the Basic Multilingual

Plane (BMP) or Plane 0. The characters that were later added

outside the 16-bit BMP are mostly for specialist applications such

as historic scripts and scientific notation. Current plans are that

there will never be characters assigned outside the21-bit code

space from 0x000000 to 0x10FFFF, which covers a bit over one

million potential future characters. The ISO 10646-1 standard

was first published in 1993 and defines the architecture of the

character set and the content of the BMP. A second part ISO

10646-2 was added in2001 and defines characters encoded

outside the BMP. In the 2003edition, the two parts were

combined into a single ISO 10646 standard. New characters are

still being added on a continuous basis, but the existing

characters will not be changed any more and are stable.

UCS assigns to each character not only a code number but also

an official name. A hexadecimal number that represents a UCS or

Unicode value is commonly preceded by “U+” as in U+0041 for

the character “Latin capital letter A”. The UCS characters U+0000

to U+007F are identical to those in US-ASCII (ISO 646 IRV) and

the range U+0000 toU+00FF is identical to ISO 8859-1 (Latin-1).

The range U+E000 toU+F8FF and also larger ranges outside the

BMP are reserved for private use. UCS also defines several

methods for encoding a string of characters as a sequence of

bytes, such as UTF-8 and UTF-16.

The full reference for the UCS standard is

International Standard ISO/IEC 10646, Information technology—

Universal Multiple-Octet Coded Character Set (UCS) . Third

edition, International Organization for Standardization, Geneva,

2003.

The standard can be ordered online from ISO as a set of PDF files

on CD-ROM for 112 CHF.

In September 2006, ISO released a free online PDF copy of ISO

10646:2003 on its Freely Available Standards web page. The ZIP

file is 82 MB long.

What are combining characters?

Some code points in UCS have been assigned to combining

characters. These are similar to the non-spacing accent keys on

a typewriter. A combining character is not a full character by

itself. It is an accent or other diacritical mark that is added to the

previous character. This way, it is possible to place any accent on

any character. The most important accented characters, like

those used in the orthographies of common languages, have

codes of their own in UCS to ensure backwards compatibility with

older character sets. They are known as precomposed

characters. Precomposed characters are available in UCS for

backwards compatibility with older encodings that have no

combining characters, such as ISO 8859. The combining-

character mechanism allows one to add accents and other

diacritical marks to any character. This is especially important for

scientific notations such as mathematical formulae and the

International Phonetic Alphabet, where any possible combination

of a base character and one or several diacritical marks could be

needed.

Combining characters follow the character which they modify. For

example, the German umlaut character Ä (“Latin capital letter A

with diaeresis”) can either be represented by the precomposed

UCS codeU+00C4, or alternatively by the combination of a

normal “Latin capital letter A” followed by a “combining

diaeresis”: U+0041 U+0308. Several combining characters can

be applied when it is necessary to stack multiple accents or add

combining marks both above and below the base character. The

Thai script, for example, needs up to two combining characters

on a single base character.

What are UCS implementation levels?

Not all systems can be expected to support all the advanced

mechanisms of UCS, such as combining characters. Therefore,

ISO 10646specifies the following three implementation levels:

Level 1

Combining characters and Hangul Jamo characters are not

supported.

[Hangul Jamo are an alternative representation of precomposed

modern Hangul syllables as a sequence of consonants and vowels.

They are required to fully support the Korean script including

Middle Korean.]

Level 2

Like level 1, however in some scripts, a fixed list of

combining characters is now allowed (e.g., for Hebrew,

Arabic, Devanagari, Bengali, Gurmukhi, Gujarati, Oriya,

Tamil, Telugo, Kannada, Malayalam, Thai and Lao). These

scripts cannot be represented adequately in UCS without

support for at least certain combining characters.

Level 3

All UCS characters are supported, such that, for example,

mathematicians can place a tilde or an arrow (or both) on

any character.

Has UCS been adopted as a national

standard?

Yes, a number of countries have published national adoptions of

ISO10646, sometimes after adding additional annexes with cross-

references to older national standards, implementation

guidelines, and specifications of various national implementation

subsets:

• China: GB 13000.1-93

• Japan: JISX 0221-1:2001

• Korea: KS X 1005-1:1995 (includes ISO 10646-1:1993

amendments 1-7)

• Vietnam: TCVN6909:2001

(This “16-bit Coded Vietnamese Character Set” is a small

UCS subset and to be implemented for data interchange

with and within government agencies as of 2002-07-01.)

• Iran: ISIRI6219:2002, Information Technology — Persian

Information Interchange and Display Mechanism, using

Unicode. (This is not aversion or subset of ISO 10646, but

a separate document that provides additional national

guidance and clarification on handling the Persian

language and the Arabic script in Unicode.)

What is Unicode?

In the late 1980s, there have been two independent attempts to

create a single unified character set. One was the ISO 10646

project of the International Organization for Standardization

(ISO), the other was the Unicode Project organized by a

consortium of (initially mostly US) manufacturers of multi-lingual

software. Fortunately, the participants of both projects realized in

around 1991 that two different unified character sets is not

exactly what the world needs. They joined their efforts and

worked together on creating a single code table. Both projects

still exist and publish their respective standards independently,

however the Unicode Consortium and ISO/IEC JTC1/SC2 have

agreed to keep the code tables of the Unicode and ISO 10646

standards compatible and they closely coordinate any further

extensions. Unicode 1.1 corresponded to ISO10646-1:1993,

Unicode 3.0 corresponded to ISO 10646-1:2000, Unicode3.2

added ISO 10646-2:2001, and Unicode 4.0 corresponds to

ISO10646:2003, and Unicode 5.0 corresponds to ISO

10646:2003 plus its amendments 1–3. All Unicode versions since

2.0 are compatible, only new characters will be added, no

existing characters will be removed or renamed in the future.

The Unicode Standard can be ordered like any normal book, for

instance via amazon.com for around 60 USD:

The Unicode Consortium: The Unicode Standard 5.0,

Addison-Wesley, 2006,

ISBN 0-321-48091-0.

If you work frequently with text processing and character sets,

you definitely should get a copy. Unicode 5.0 is also available

online.

So what is the difference between Unicode and

ISO 10646?

The Unicode Standard published by the Unicode Consortium

corresponds to ISO10646 at implementation level 3. All

characters are at the same positions and have the same names in

both standards.

The Unicode Standard defines in addition much more semantics

associated with some of the characters and is in general a better

reference for implementers of high-quality typographic publishing

systems. Unicode specifies algorithms for rendering presentation

forms of some scripts (say Arabic), handling of bi-directional texts

that mix for instance Latin and Hebrew, algorithms for sorting

and string comparison, and much more.

The ISO 10646 standard on the other hand is not much more

than a simple character set table, comparable to the old ISO

8859 standards. It specifies some terminology related to the

standard, defines some encoding alternatives, and it contains

specifications of how to use UCS in connection with other

established ISO standards such as ISO6429 and ISO 2022. There

are other closely related ISO standards, for instance ISO14651 on

sorting UCS strings. A nice feature of the ISO 10646-1standard is

that it provides CJK example glyphs in five different style

variants, while the Unicode standard shows the CJK ideographs

only in a Chinese variant.

What is UTF-8?

UCS and Unicode are first of all just code tables that assign

integer numbers to characters. There exist several alternatives

for how a sequence of such characters or their respective integer

values can be represented as a sequence of bytes. The two most

obvious encodings store Unicode text as sequences of either 2 or

4 bytes sequences. The official terms for these encodings are

UCS-2 and UCS-4, respectively. Unless otherwise specified, the

most significant byte comes first in these (Bigendian convention).

An ASCII or Latin-1 file can be transformed into a UCS-2 file by

simply inserting a 0x00 byte in front of every ASCII byte. If we

want to have a UCS-4 file, we have to insert three 0x00 bytes

instead before every ASCII byte.

Using UCS-2 (or UCS-4) under Unix would lead to very severe

problems. Strings with these encodings can contain as parts of

many wide characters bytes like “\0” or “/” which have a special

meaning in filenames and other C library function parameters. In

addition, the majority of UNIX tools expects ASCII files and

cannot read 16-bit words as characters without major

modifications. For these reasons,UCS-2 is not a suitable external

encoding of Unicode in filenames, text files, environment

variables, etc.

The UTF-8 encoding defined in ISO 10646-1:2000 Annex D and

also described in RFC 3629 as well as section 3.9 of the Unicode

4.0 standard does not have these problems. It is clearly the way

to go for using Unicode under Unix-style operating systems.

UTF-8 has the following properties:

• UCS characters U+0000 to U+007F (ASCII) are encoded

simply as bytes 0x00 to 0x7F (ASCII compatibility). This

means that files and strings which contain only 7-bit ASCII

characters have the same encoding under both ASCII and

UTF-8.

• All UCS characters >U+007F are encoded as a sequence of

several bytes, each of which has the most significant bit

set. Therefore, no ASCII byte (0x00-0x7F) can appear as

part of any other character.

• The first byte of a multibyte sequence that represents a

non-ASCII character is always in the range 0xC0 to 0xFD

and it indicates how many bytes follow for this character.

All further bytes in a multibyte sequence are in the range

0x80 to 0xBF. This allows easy resynchronization and

makes the encoding stateless and robust against missing

bytes.

• All possible 231 UCS codes can be encoded.

• UTF-8 encoded characters may theoretically be up to six

bytes long, however 16-bit BMP characters are only up to

three bytes long.

• The sorting order of Bigendian UCS-4 byte strings is

preserved.

• The bytes 0xFE and 0xFF are never used in the UTF-8

encoding.

The following byte sequences are used to represent a character.

The sequence to be used depends on the Unicode number of the

character:

U-00000000 – U-

0000007F:

0xxxxxxx

U-00000080 – U-

000007FF:

110xxxxx 10xxxxxx

U-00000800 – U-

0000FFFF:

1110xxxx 10xxxxxx 10xxxxxx

U-00010000 – U-

001FFFFF:

11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

U-00200000 – U- 111110xx 10xxxxxx 10xxxxxx

03FFFFFF: 10xxxxxx10xxxxxx

U-04000000 – U-

7FFFFFFF:

1111110x 10xxxxxx 10xxxxxx

10xxxxxx10xxxxxx 10xxxxxx

The xxx bit positions are filled with the bits of the character code

number in binary representation. The rightmost xbit is the least-

significant bit. Only the shortest possible multibyte sequence

which can represent the code number of the character can be

used. Note that in multibyte sequences, the number of leading 1

bits in the first byte is identical to the number of bytes in the

entire sequence.

Examples: The Unicode character U+00A9 = 10101001

(copyright sign) is encoded in UTF-8 as

 11000010 10101001 = 0xC2 0xA9

and character U+2260 = 0010 0010 0110 0000 (not equal to)

is encoded as:

 11100010 10001001 10100000 = 0xE2 0x89 0xA0

The official name and spelling of this encoding is UTF-8, where

UTF stands for UCS Transformation Format. Please do not write

UTF-8 in any documentation text in other ways (such as utf8or

UTF_8), unless of course you refer to a variable name and not the

encoding itself.

An important note for developers of UTF-8 decoding

routines: For security reasons, a UTF-8 decoder must not accept

UTF-8 sequences that are longer than necessary to encode a

character. For example, the character U+000A (line feed) must

be accepted from a UTF-8 stream only in the form 0x0A, but not

in any of the following five possible overlong forms:

 0xC0 0x8A

 0xE0 0x80 0x8A

 0xF0 0x80 0x80 0x8A

 0xF8 0x80 0x80 0x80 0x8A

 0xFC 0x80 0x80 0x80 0x80 0x8A

Any overlong UTF-8 sequence could be abused to bypass UTF-

8substring tests that look only for the shortest possible encoding.

All overlong UTF-8 sequences start with one of the following byte

patterns:

1100000x (10xxxxxx)

11100000 100xxxxx (10xxxxxx)

11110000 1000xxxx (10xxxxxx 10xxxxxx)

11111000 10000xxx (10xxxxxx 10xxxxxx10xxxxxx)

11111100 100000xx (10xxxxxx 10xxxxxx10xxxxxx 10xxxxxx)

Also note that the code positions U+D800 to U+DFFF (UTF-

16surrogates) as well as U+FFFE and U+FFFF must not occur in

normalUTF-8 or UCS-4 data. UTF-8 decoders should treat them

like malformed or overlong sequences for safety reasons.

Markus Kuhn’s UTF-8 decoder stress test file contains a

systematic collection of malformed and overlong UTF-8 sequences

and will help you to verify the robustness of your decoder.

Who invented UTF-8?

The encoding known today as UTF-8 was invented by Ken

Thompson. It was born during the evening hours of 1992-09-02

in a New Jersey diner, where he designed it in the presence of

Rob Pike on a placemat(see Rob Pike’s UTF-8 history). It replaced

an earlier attempt to design a FSS/UTF (file system safe UCS

transformation format) that was circulated in an X/Open working

document in August 1992 by Gary Miller (IBM), Greger

Leijonhufvud and John Entenmann (SMI) as a replacement for the

division-heavy UTF-1encoding from the first edition of ISO

10646-1. By the end of the first week of September 1992, Pike

and Thompson had turned AT&T Bell Lab’s Plan 9into the world’s

first operating system to use UTF-8. They reported about their

experience at the USENIX Winter 1993 Technical Conference, San

Diego, January 25-29, 1993,Proceedings, pp. 43-50. FSS/UTF

was briefly also referred to as UTF-2and later renamed into UTF-

8, and pushed through the standards process by the X/Open Joint

Internationalization Group XOJIG.

Where do I find nice UTF-8 example files?

A few interesting UTF-8 example files for tests and

demonstrations are:

• UTF-8Sampler web page by the Kermit project

• Markus Kuhn’s example plain-text files, including among

others the classic demo, decoder test, TeX repertoire,

WGL4 repertoire, euro test pages, and Robert Brady’s IPA

lyrics.

• Unicode Transcriptions

• Generator for Indic Unicode test files

What different encodings are there?

Both the UCS and Unicode standards are first of all large tables

that assign to every character an integer number. If you use the

term “UCS”, “ISO 10646”, or “Unicode”, this just refers to a

mapping between characters and integers. This does not yet

specify how to store these integers as a sequence of bytes in

memory.

ISO 10646-1 defines the UCS-2 and UCS-4 encodings. These are

sequences of 2 bytes and 4 bytes per character, respectively.

ISO10646 was from the beginning designed as a 31-bit character

set (with possible code positions ranging from U-00000000 to U-

7FFFFFFF),however it took until 2001 for the first characters to be

assigned beyond the Basic Multilingual Plane (BMP), that is

beyond the first216 character positions (see ISO 10646-2 and

Unicode 3.1).UCS-4 can represent all UCS and Unicode

characters, UCS-2 can represent only those from the BMP

(U+0000 to U+FFFF).

“Unicode” originally implied that the encoding was UCS-2 and it

initially didn’t make any provisions for characters outside the

BMP(U+0000 to U+FFFF). When it became clear that more than

64k characters would be needed for certain special applications

(historic alphabets and ideographs, mathematical and musical

typesetting, etc.), Unicode was turned into a sort of 21-bit

character set with possible code points in the range U-00000000

to U-0010FFFF. The 2×1024 surrogate characters (U+D800 to

U+DFFF) were introduced into the BMP to allow1024×1024 non-

BMP characters to be represented as a sequence of two 16-bit

surrogate characters. This way UTF-16 was born, which

represents the extended “21-bit” Unicode in a way backwards

compatible withUCS-2. The term UTF-32 was introduced in

Unicode to describe a 4-byte encoding of the extended“21-bit”

Unicode. UTF-32 is the exact same thing as UCS-4, except that

by definition UTF-32 is never used to represent characters

aboveU-0010FFFF, while UCS-4 can cover all 231 code positions

up to U-7FFFFFFF. The ISO 10646 working group has agreed to

modify their standard to exclude code positions beyond U-

0010FFFF, in order to turn the new UCS-4 and UTF-32 into

practically the same thing.

In addition to all that, UTF-8 was introduced to provide an ASCII

backwards compatible multi-byte encoding. The definitions of

UTF-8 in UCS and Unicode differed originally slightly, because in

UCS, up to 6-byte long UTF-8 sequences were possible to

represent characters up to U-7FFFFFFF, while in Unicode only up

to4-byte long UTF-8 sequences are defined to represent

characters up toU-0010FFFF. (The difference was in essence the

same as between UCS-4and UTF-32.)

No endianess is implied by the encoding names UCS-2, UCS-4,

UTF-16,and UTF-32, though ISO 10646-1 says that Bigendian

should be preferred unless otherwise agreed. It has become

customary to append the letters “BE” (Bigendian, high-byte first)

and “LE” (Littleendian, low-byte first) to the encoding names in

order to explicitly specify a byte order.

In order to allow the automatic detection of the byte order, it has

become customary on some platforms (notably Win32) to start

every Unicode file with the character U+FEFF (ZERO WIDTH NO-

BREAK SPACE),also known as the Byte-Order Mark (BOM). Its

byte-swapped equivalent U+FFFE is not a valid Unicode

character, therefore it helps to unambiguously distinguish the

Bigendian and Littleendian variants ofUTF-16 and UTF-32.

A full featured character encoding converter will have to provide

the following 13 encoding variants of Unicode and UCS:

UCS-2, UCS-2BE, UCS-2LE, UCS-4, UCS-4LE, UCS-4BE, UTF-8,

UTF-16,UTF-16BE, UTF-16LE, UTF-32, UTF-32BE, UTF-32LE

Where no byte order is explicitly specified, use the byte order of

the CPU on which the conversion takes place and in an input

stream swap the byte order whenever U+FFFE is encountered.

The difference between outputting UCS-4 versus UTF-32 and

UTF-16 versus UCS-2 lies in handling out-of-range characters.

The fallback mechanism for non-representable characters has to

be activated in UTF-32 (for characters > U-0010FFFF) or UCS-2

(for characters > U+FFFF) even whereUCS-4 or UTF-16

respectively would offer a representation.

Really just of historic interest are UTF-1, UTF-7, SCSU and a

dozen other less widely publicised UCS encoding proposals with

various properties, none of which ever enjoyed any significant

use. Their uses should be avoided.

A good encoding converter will also offer options for adding or

removing the BOM:

• Unconditionally prefix the output text with U+FEFF.

• Prefix the output text with U+FEFF unless it is already there.

• Remove the first character if it is U+FEFF.

It has also been suggested to use the UTF-8 encoded BOM (0xEF

0xBB0xBF) as a signature to mark the beginning of a UTF-8 file.

This practice should definitely not be used on POSIX systems for

several reasons:

• On POSIX systems, the locale and not magic file type codes

define the encoding of plain text files. Mixing the two

concepts would add a lot of complexity and break existing

functionality.

• Adding a UTF-8 signature at the start of a file would

interfere with many established conventions such as the

kernel looking for “#!”at the beginning of a plaintext

executable to locate the appropriate interpreter.

• Handling BOMs properly would add undesirable complexity

even to simple programs like cat or grep that mix

contents of several files into one.

In addition to the encoding alternatives, Unicode also specifies

various Normalization Forms, which provide reasonable subsets of

Unicode, especially to remove encoding ambiguities caused by

the presence of precomposed and compatibility characters:

• Normalization Form D (NFD): Split up (decompose)

precomposed characters into combining sequences where

possible ,e.g. use U+0041 U+0308 (LATIN CAPITAL

LETTER A, COMBINING DIAERESIS)instead of U+00C4

(LATIN CAPITAL LETTER A WITH DIAERESIS). Also avoid

deprecated characters, e.g. use U+0041 U+030A (LATIN

CAPITAL LETTER A, COMBINING RING ABOVE) instead of

U+212B (ANGSTROM SIGN).

• Normalization Form C (NFC): Use precomposed

characters instead of combining sequences where possible,

e.g. use U+00C4 (“Latin capital letter A with diaeresis”)

instead of U+0041 U+0308 (“Latin capital letter A”,

“combining diaeresis”). Also avoid deprecated characters,

e.g. use U+00C5 (LATIN CAPITAL LETTER A WITH RING

ABOVE) instead of U+212B (ANGSTROM SIGN).

NFC is the preferred form for Linux and WWW.

• Normalization Form KD (NFKD): Like NFD, but avoid in

addition the use of compatibility characters, e.g. use “fi”

instead ofU+FB01 (LATIN SMALL LIGATURE FI).

• Normalization Form KC (NFKC): Like NFC, but avoid in

addition the use of compatibility characters, e.g. use “fi”

instead ofU+FB01 (LATIN SMALL LIGATURE FI).

A full-featured character encoding converter should also offer

conversion between normalization forms. Care should be used

with mapping to NFKD or NFKC, as semantic information might be

lost (for instance U+00B2 (SUPERSCRIPT TWO) maps to 2) and

extra mark-up information might have to be added to preserve it

(e.g.,² in HTML).

What programming languages support

Unicode?

More recent programming languages that were developed after

around1993 already have special data types for Unicode/ISO

10646-1characters. This is the case with Ada95, Java, TCL, Perl,

Python, C# and others.

ISO C 90 specifies mechanisms to handle multi-byte encoding

and wide characters. These facilities were improved with

Amendment 1 to ISO C90 in 1994 and even further

improvements were made in the ISO C 99 standard. These

facilities were designed originally with various East-Asian

encodings in mind. They are on one side slightly more

sophisticated than what would be necessary to handle UCS

(handling of “shift sequences”), but also lack support for more

advanced aspects of UCS (combining characters, etc.). UTF-8 is

an example of what the ISO C standard calls multi-byte encoding.

The type wchar_t, which in modern environments is usually a

signed 32-bit integer, can be used to hold Unicode characters.

(Since wchar_t has ended up being a 16-bit type on some

platforms and a 32-bit type on others, additional types char16_t

and char32_t have been proposed in ISO TR 19769 for future

revisions of the C language, to give application programmers

more control over the representation of such wide strings.)

Unfortunately, wchar_t was already widely used for various Asian

16-bit encodings throughout the 1990s. Therefore, the ISO C 99

standard was bound by backwards compatibility. It could not be

changed to require wchar_t to be used with UCS, like Java and

Ada95 managed to do. However, the C compiler can at least

signal to an application that wchar_t is guaranteed to hold UCS

values in all locales. To do so, it defines the

macro__STDC_ISO_10646__ to be an integer constant of the

form yyyymmL. The year and month refer to the version of

ISO/IEC 10646 and its amendments that have been

implemented. For example, __STDC_ISO_10646__ ==

200009L if the implementation covers ISO/IEC 10646-1:2000.

How should Unicode be used under Linux?

Before UTF-8 emerged, Linux users all over the world had to use

various different language-specific extensions of ASCII. Most

popular were ISO 8859-1 and ISO 8859-2 in Europe, ISO 8859-7

in Greece, KOI-8/ ISO 8859-5 / CP1251 in Russia, EUC and Shift-

JIS in Japan, BIG5 in Taiwan, etc. This made the exchange of files

difficult and application software had to worry about various small

differences between these encodings. Support for these

encodings was usually incomplete, untested, and unsatisfactory,

because the application developers rarely used all these

encodings themselves.

Because of these difficulties, major Linux distributors and

application developers are now phasing out these older legacy

encodings in favour of UTF-8. UTF-8 support has improved

dramatically over the last few years and many people now use

UTF-8 on a daily basis in

• text files (source code, HTML files, email messages, etc.)

• file names

• standard input and standard output, pipes

• environment variables

• cut and paste selection buffers

• telnet, modem, and serial port connections to terminal

emulators

and in any other places where byte sequences used to be

interpreted in ASCII.

In UTF-8 mode, terminal emulators such as xterm or the Linux

console driver transform every keystroke into the corresponding

UTF-8sequence and send it to the stdin of the foreground

process. Similarly, any output of a process on stdout is sent to

the terminal emulator, where it is processed with a UTF-8

decoder and then displayed using a 16-bit font.

Full Unicode functionality with all bells and whistles (e.g. high-

quality typesetting of the Arabic and Indic scripts) can only be

expected from sophisticated multi-lingual word-processing

packages. What Linux supports today on a broad base is far

simpler and mainly aimed at replacing the old 8- and 16-bit

character sets. Linux terminal emulators and command line tools

usually only support a Level1 implementation of ISO 10646-1 (no

combining characters), and only scripts such as Latin, Greek,

Cyrillic, Armenian, Georgian, CJK, and many scientific symbols

are supported that need no further processing support. At this

level, UCS support is very comparable to ISO 8859support and

the only significant difference is that we have now thousands of

different characters available, that characters can be represented

by multibyte sequences, and that ideographic

Chinese/Japanese/Korean characters require two terminal

character positions (double-width).

Level 2 support in the form of combining characters for selected

scripts (in particular Thai)and Hangul Jamo is in parts also

available (i.e., some fonts, terminal emulators and editors

support it via simple over stringing), but precomposed characters

should be preferred over combining character sequences where

available. More formally, the preferred way of encoding text in

Unicode under Linux should be Normalization FormC as defined in

Unicode Technical Report #15.

One influential non-POSIX PC operating system vendor (whom we

shall leave unnamed here) suggested that all Unicode files should

start with the character ZERO WIDTH NOBREAK SPACE (U+FEFF),

which is in this role also referred to as the “signature” or “byte-

order mark (BOM)”, in order to identify the encoding and byte-

order used in a file. Linux/Unix does not use any BOMs and

signatures. They would break far too many existing ASCII syntax

conventions (such as scripts starting with #!). On POSIX

systems, the selected locale identifies already the encoding

expected in all input and output files of a process. It has also

been suggested to call UTF-8files without a signature “UTF-8N”

files, but this non-standard term is usually not used in the POSIX

world.

Before you switch to UTF-8 under Linux, update your installation

to a recent distribution with up-to-date UTF-8 support. This is

particular the case if you use an installation older than SuSE 9.1

or Red Hat 8.0. Before these, UTF-8 support was not yet mature

enough to be recommendable for daily use.

RedHat Linux 8.0 (September 2002) was the first distribution to

take the leap of switching to UTF-8 as the default encoding for

most locales. The only exceptions were Chinese/Japanese/Korean

locales, for which there were at the time still too many specialized

tools available that did not yet support UTF-8. This first mass

deployment of UTF-8 under Linux caused most remaining issues

to be ironed out rather quickly during 2003. SuSE Linux then

switched its default locales to UTF-8 as well, as of version

9.1(May 2004). It was followed by Ubuntu Linux, the first Debian-

derivative that switched to UTF-8 as the system-wide default

encoding. With the migration of the three most popular Linux

distributions, UTF-8 related bugs have now been fixed in

practically all well-maintained Linux tools. Other distributions can

be expected to follow soon.

How do I have to modify my software?

If you are a developer, there are several approaches to add UTF-

8support. We can split them into two categories, which I will call

soft and hard conversion. In soft conversion, data is kept in its

UTF-8form everywhere and only very few software changes are

necessary. In hard conversion, any UTF-8 data that the program

reads will be converted into wide-character arrays and will be

handled as such everywhere inside the application. Strings will

only be converted back to UTF-8 at output time. Internally, a

character remains a fixed-size memory object.

We can also distinguish hard-wired and locale-dependent

approaches for supporting UTF-8, depending on how much the

string processing relies on the standard library. C offers a number

of string processing functions designed to handle arbitrary locale-

specific multibyte encodings. An application programmer who

relies entirely on these can remain unaware of the actual details

of the UTF-8 encoding. Chances are then that by merely changing

the locale setting, several other multi-byte encodings (such as

EUC) will automatically be supported as well. The other way a

programmer can go is to hardcode knowledge aboutUTF-8 into

the application. This may lead in some situations to significant

performance improvements. It may be the best approach for

applications that will only be used with ASCII and UTF-8.

Even where support for every multi-byte encoding supported by

libc is desired, it may well be worth to add extra code optimized

forUTF-8. Thanks to UTF-8’s self-synchronizing features, it can be

processed very efficiently. The locale-dependent libc string

functions can be two orders of magnitude slower than equivalent

hardwired UTF-8procedures. A bad teaching example was GNU

grep 2.5.1, which relied entirely on locale-dependent libc

functions such as mbrlen() for its generic multi-byte encoding

support. This made it about 100× slower in multibyte mode than

in single-byte mode! Other applications with hardwired support

for UTF-8regular expressions (e.g., Perl 5.8) do not suffer this

dramatic slowdown.

Most applications can do very fine with just soft conversion. This

is what makes the introduction of UTF-8 on Unix feasible at all. To

name two trivial examples, programs such as cat and echo do

not have to be modified at all. They can remain completely

ignorant as to whether their input and output is ISO 8859-2or

UTF-8, because they handle just byte streams without processing

them. They only recognize ASCII characters and control codes

such as'\n' which do not change in any way under UTF-

8.Therefore the UTF-8 encoding and decoding is done for these

applications completely in the terminal emulator.

A small modification will be necessary for any program that

determines the number of characters in a string by counting the

bytes. With UTF-8, as with other multi-byte encodings, where the

length of a text string is of concern, programmers have to

distinguish clearly between

1. the number of bytes,

2. the number of characters,

3. the display width (e.g., the number of cursor position cells

in aVT100 terminal emulator)

of a string.

C’s strlen(s) function always counts the number of bytes. This

is the number relevant, for example, for memory management

(determination of string buffer sizes). Where the output of strlen

is used for such purposes, no change will be necessary.

The number of characters can be counted in C in a portable way

using mbstowcs(NULL,s,0). This works for UTF-8 like for any

other supported encoding, as long as the appropriate locale has

been selected. A hard-wired technique to count the number of

characters in a UTF-8 string is to count all bytes except those in

the range 0x80 – 0xBF, because these are just continuation bytes

and not characters of their own. However, the need to count

characters arises surprisingly rarely in applications.

In applications written for ASCII or ISO 8859, a far more common

use of strlen is to predict the number of columns that the

cursor of the terminal will advance if a string is printed. With UTF-

8, neither a byte nor a character count will predict the display

width, because ideographic characters (Chinese, Japanese,

Korean) will occupy two column positions, whereas control and

combining characters occupy none. To determine the width of a

string on the terminal screen, it is necessary to decode the UTF-

8sequence and then use the wcwidth function to test the display

width of each character, or wcswidth to measure the entire

string.

For instance, the ls program had to be modified, because

without knowing the column widths of filenames, it cannot format

the table layout in which it presents directories to the user.

Similarly, all programs that assume somehow that the output is

presented in a fixed-width font and format it accordingly have to

learn how to count columns in UTF-8 text. Editor functions such

as deleting a single character have to be slightly modified to

delete all bytes that might belong to one character. Affected were

for instance editors (vi, emacs, readline, etc.) as well as

programs that use the ncurses library.

Any Unix-style kernel can do fine with soft conversion and needs

only very minor modifications to fully support UTF-8. Most kernel

functions that handle strings (e.g. file names, environment

variables, etc.) are not affected at all by the encoding.

Modifications were necessary in Linux the following places:

• The console display and keyboard driver (another VT100

emulator)have to encode and decode UTF-8 and should

support at least some subset of the Unicode character set.

This had already been available in Linux as early as kernel

1.2 (send ESC %G to the console to activate UTF-8 mode).

• External file system drivers such as VFAT and WinNT have to

convert file name character encodings. UTF-8 is one of the

available conversion options, and the mount command has

to tell the kernel driver that user processes shall see UTF-

8 file names. Since VFAT and WinNT use already Unicode

anyway, UTF-8 is the only available encoding that

guarantees a lossless conversion here.

• The tty driver of any POSIX system supports a “cooked”

mode, in which some primitive line editing functionality is

available. In order to allow the character-erase function

(which is activated when you press backspace) to work

properly with UTF-8, someone needs to tell it not count

continuation bytes in the range 0x80-0xBF as characters,

but to delete them as part of a UTF-8 multi-byte sequence.

Since the kernel is ignorant of the libc locale mechanics,

another mechanism is needed to tell the tty driver about

UTF-8 being used. Linux kernel versions 2.6 or newer

support a bit IUTF8 in the c_iflag member variable of

struct termios. If it is set, the “cooked” mode line editor

will treat UTF-8 multi-byte sequences correctly. This mode

can be set from the command shell with “stty iutf8”. Xterm

and friends should set this bit automatically when called in

a UTF-8 locale.

C support for Unicode and UTF-8

Starting with GNU glibc 2.2, the type wchar_t is officially

intended to be used only for 32-bit ISO 10646 values,

independent of the currently used locale. This is signaled to

applications by the definition of the __STDC_ISO_10646__macro

as required by ISO C99. The ISO C multi-byte conversion

functions (mbsrtowcs(), wcsrtombs(), etc.)are fully

implemented in glibc 2.2 or higher and can be used to convert

between wchar_t and any locale-dependent multibyte encoding,

including UTF-8, ISO 8859-1, etc.

For example, you can write

 #include <stdio.h>

 #include <locale.h>

 int main()

 {

 if (!setlocale(LC_CTYPE, "")) {

 fprintf(stderr, "Can't set the specified locale! "

 "Check LANG, LC_CTYPE, LC_ALL.\n");

 return 1;

 }

 printf("%ls\n", L"Schöne Grüße");

 return 0;

 }

Call this program with the locale setting LANG=de_DE and the

output will be in ISO 8859-1. Call it with LANG=de_DE.UTF-8

and the output will be in UTF-8. The %ls format specifier in

printf calls wcsrtombs in order to convert the wide character

argument string into the locale-dependent multi-byte encoding.

Many of C’s string functions are locale-independent and they just

look at zero-terminated byte sequences:

 strcpy strncpy strcat strncat strcmp strncmp strdup strchr strrchr

 strcspn strspn strpbrk strstr strtok

Some of these (e.g. strcpy) can equally be used for single-

byte(ISO 8859-1) and multi-byte (UTF-8) encoded character sets,

as they need no notion of how many byte long a character is,

while others(e.g., strchr) depend on one character being encoded

in a single char value and are of less use for UTF-8 (strchr still

works fine if you just search for an ASCII character in a UTF-8

string).

Other C functions are locale dependent and work in UTF-8 locales

just as well:

 strcoll strxfrm

How should the UTF-8 mode be activated?

If your application is soft converted and does not use the

standard locale-dependent C multibyte routines

(mbsrtowcs(),wcsrtombs(), etc.) to convert everything into

wchar_t for processing, then it might have to find out in some

way, whether it is supposed to assume that the text data it

handles is in some 8-bit encoding (like ISO 8859-1, where 1 byte

= 1character) or UTF-8. Once everyone uses only UTF-8, you can

just make it the default, but until then both the classical 8-bit

sets and UTF-8may still have to be supported.

The first wave of applications with UTF-8 support used a whole lot

of different command line switches to activate their respective

UTF-8modes, for instance the famous xterm -u8. That turned

out to be a very bad idea. Having to remember a special

command line option or other configuration mechanism for every

application is very tedious, which is why command line options

are not the proper way of activating a UTF-8 mode.

The proper way to activate UTF-8 is the POSIX locale mechanism.

A locale is a configuration setting that contains information about

culture-specific conventions of software behaviour, including the

character encoding, the date/time notation, alphabetic sorting

rules, the measurement system and common office paper size,

etc. The names of locales usually consist of ISO639-1 language

and ISO3166-1 country codes, sometimes with additional

encoding names or other qualifiers.

You can get a list of all locales installed on your system (usually

in /usr/lib/locale/) with the command locale-a. Set the

environment variable LANG to the name of your preferred locale.

When a C program executes the setlocale(LC_CTYPE, "")

function, the library will test the environment variables LC_ALL,

LC_CTYPE, and LANG in that order, and the first one of these that

has a value will determine which locale data is loaded for the

LC_CTYPE category (which controls the multibyte conversion

functions). The locale data is split up into separate categories. For

example, LC_CTYPE defines the character encoding and

LC_COLLATE defines the string sorting order. The LANG

environment variable is used to set the default locale for all

categories, but the LC_* variables can be used to override

individual categories. Do not worry too much about the country

identifiers in the locales. Locales such as en_GB (English in Great

Britain) and en_AU (English in Australia) differ usually only in the

LC_MONETARY category (name of currency, rules for printing

monetary amounts),which practically no Linux application ever

uses. LC_CTYPE=en_GB and LC_CTYPE=en_AU have exactly the

same effect.

You can query the name of the character encoding in your current

locale with the command locale charmap. This should sayUTF-

8 if you successfully picked a UTF-8 locale in the LC_CTYPE

category. The command locale -m provides a list with the

names of all installed character encodings.

If you use exclusively C library multibyte functions to do all the

conversion between the external character encoding and the

wchar_t encoding that you use internally, then the Clibrary will

take care of using the right encoding according to LC_CTYPE for

you and your program does not even have to know explicitly what

the current multibyte encoding is.

However, if you prefer not to do everything using the libc multi-

byte functions (e.g., because you think this would require too

many changes in your software or is not efficient enough), then

your application has to find out for itself when to activate the

UTF-8mode. To do this, on any X/Open compliant systems, where

<langinfo.h> is available, you can use a line such as

 utf8_mode = (strcmp(nl_langinfo(CODESET), "UTF-8") == 0);

in order to detect whether the current locale uses the UTF-

8encoding. You have of course to add a

setlocale(LC_CTYPE,"") at the beginning of your application

to set the locale according to the environment variables first. The

standard function call nl_langinfo(CODESET) is also what

localecharmap calls to find the name of the encoding specified

by the current locale for you. It is available on pretty much every

modern Unix now. FreeBSD added nl_langinfo(CODESET)

support with version 4.6 (2002-06). If you need an autoconf test

for the availability of nl_langinfo(CODESET), here is the one

Bruno Haible suggested:

======================== m4/codeset.m4 ================================

#serial AM1

dnl From Bruno Haible.

AC_DEFUN([AM_LANGINFO_CODESET],

[

 AC_CACHE_CHECK([for nl_langinfo and CODESET], am_cv_langinfo_codeset,

 [AC_TRY_LINK([#include <langinfo.h>],

 [char* cs = nl_langinfo(CODESET);],

 am_cv_langinfo_codeset=yes,

 am_cv_langinfo_codeset=no)

])

 if test $am_cv_langinfo_codeset = yes; then

 AC_DEFINE(HAVE_LANGINFO_CODESET, 1,

 [Define if you have <langinfo.h> and nl_langinfo(CODESET).])

 fi

])

===

[You could also try to query the locale environment variables

yourself without using setlocale(). In the sequence LC_ALL,

LC_CTYPE, LANG, look for the first of these environment

variables that has a value. Make the UTF-8 mode the default (still

overridable by command line switches) when this value contains

the substring UTF-8,as this indicates reasonably reliably that the

C library has been asked to use a UTF-8 locale. An example code

fragment that does this is

 char *s;

 int utf8_mode = 0;

 if (((s = getenv("LC_ALL")) && *s) ||

 ((s = getenv("LC_CTYPE")) && *s) ||

 ((s = getenv("LANG")) && *s)) {

 if (strstr(s, "UTF-8"))

 utf8_mode = 1;

 }

This relies of course on all UTF-8 locales having the name of the

encoding in their name, which is not always the case, therefore

the nl_langinfo() query is clearly the better method. If you

are really concerned that calling nl_langinfo() might not be

portable enough, there is also Markus Kuhn’s portable public

domain nl_langinfo(CODESET)emulator for systems that do

not have the real thing (and another one from Bruno Haible), and

you can use the norm_charmap() function to standardize the

output of the nl_langinfo(CODESET) on different platforms.]

How do I get a UTF-8 version of xterm?

The xterm version that comes with XFree864.0 or higher

(maintained by Thomas Dickey) includes UTF-8 support. To

activate it, start xterm in aUTF-8 locale and use a font with

iso10646-1 encoding, for instance with

 LC_CTYPE=en_GB.UTF-8 xterm \

 -fn '-Misc-Fixed-Medium-R-SemiCondensed--13-120-75-75-C-60-ISO10646-1'

and then cat some example file, such as UTF-8-demo.txtin the

newly started xterm and enjoy what you see.

If you are not using XFree86 4.0 or newer, then you can

alternatively download the latest xterm development version

separately and compile it yourself with“./configure --

enable-wide-chars ; make” or alternatively with “xmkmf;

make Makefiles; make; make install;

makeinstall.man”.

If you do not have UTF-8 locale support available, use command

line option -u8 when you invoke xterm to switch input and output

to UTF-8.

How much of Unicode does xterm support?

Xterm in XFree86 4.0.1 only supported Level 1 (no combining

characters) of ISO 10646-1 with fixed character width and left-to-

right writing direction. In other words, the terminal semantics

were basically the same as for ISO 8859-1, except that it can

now decode UTF-8 and can access 16-bit characters.

With XFree86 4.0.3, two important functions were added:

• automatic switching to a double-width font for CJK

ideographs

• simple overstriking combining characters

If the selected normal font is X × Y pixels large, then xterm will

attempt to load in addition a2X × Y pixels large font (same XLFD,

except for a doubled value of the AVERAGE_WIDTH property). It

will use this font to represent all Unicode characters that have

been assigned the East Asian Wide (W) or East Asian Full

Width(F) property in Unicode Technical Report #11.

The following fonts coming with XFree86 4.x are suitable for

display of Japanese and Korean Unicode text with terminal

emulators and editors:

 6x13 -Misc-Fixed-Medium-R-SemiCondensed--13-120-75-75-C-60-ISO10646-1

 6x13B -Misc-Fixed-Bold-R-SemiCondensed--13-120-75-75-C-60-ISO10646-1

 6x13O -Misc-Fixed-Medium-O-SemiCondensed--13-120-75-75-C-60-ISO10646-1

 12x13ja -Misc-Fixed-Medium-R-Normal-ja-13-120-75-75-C-120-ISO10646-1

 9x18 -Misc-Fixed-Medium-R-Normal--18-120-100-100-C-90-ISO10646-1

 9x18B -Misc-Fixed-Bold-R-Normal--18-120-100-100-C-90-ISO10646-1

 18x18ja -Misc-Fixed-Medium-R-Normal-ja-18-120-100-100-C-180-ISO10646-1

 18x18ko -Misc-Fixed-Medium-R-Normal-ko-18-120-100-100-C-180-ISO10646-1

Some simple support for non-spacing or enclosing combining

characters (i.e., those with general category code Mn or Me in the

Unicode database) is now also available, which is implemented by

just overstriking (logical OR-ing) a base-character glyph with up

to two combining-character glyphs. This produces acceptable

results for accents below the base line and accents on top of

small characters. It also works well, for example, for Thai and

Korean Hangul Conjoining Jamo fonts that were specifically

designed for use with overstriking. However, the results might

not be fully satisfactory for combining accents on top of tall

characters in some fonts, especially with the fonts of the “fixed”

family. Therefore precomposed characters will continue to be

preferable where available.

The fonts below that come with XFree86 4.x are suitable for

display of Latin etc. combining characters (extra head-space).

Other fonts will only look nice with combining accents on small x-

high characters.

 6x12 -Misc-Fixed-Medium-R-Semicondensed--12-110-75-75-C-60-ISO10646-1

 9x18 -Misc-Fixed-Medium-R-Normal--18-120-100-100-C-90-ISO10646-1

 9x18B -Misc-Fixed-Bold-R-Normal--18-120-100-100-C-90-ISO10646-1

The following fonts coming with XFree86 4.x are suitable for

display of Thai combining characters:

 6x13 -Misc-Fixed-Medium-R-SemiCondensed--13-120-75-75-C-60-ISO10646-1

 9x15 -Misc-Fixed-Medium-R-Normal--15-140-75-75-C-90-ISO10646-1

 9x15B -Misc-Fixed-Bold-R-Normal--15-140-75-75-C-90-ISO10646-1

 10x20 -Misc-Fixed-Medium-R-Normal--20-200-75-75-C-100-ISO10646-1

 9x18 -Misc-Fixed-Medium-R-Normal--18-120-100-100-C-90-ISO10646-1

The fonts18x18ko,18x18Bko,16x16Bko, and16x16koare suitable

for displaying Hangul Jamo (using the same simple overstriking

character mechanism used for Thai).

A note for programmers of text mode applications:

With support for CJK ideographs and combining characters, the

output of xterm behaves a little bit more like with a proportional

font, because a Latin/Greek/Cyrillic/etc. character requires one

column position, a CJK ideograph two, and a combining character

zero.

The Open Group’s Single UNIX Specification specifies the two C

functions wcwidth() and wcswidth() that allow an application to

test how many column positions a character will occupy:

 #include <wchar.h>

 int wcwidth(wchar_t wc);

 int wcswidth(const wchar_t *pwcs, size_t n);

Markus Kuhn’s free wcwidth() implementation can be used by

applications on platforms where the Clibrary does not yet provide

a suitable function.

Xterm will for the foreseeable future probably not support the

following functionality, which you might expect from a more

sophisticated full Unicode rendering engine:

• bidirectional output of Hebrew and Arabic characters

• substitution of Arabic presentation forms

• substitution of Indic / Syriac ligatures

• arbitrary stacks of combining characters

Hebrew and Arabic users will therefore have to use application

programs that reverse and left-pad Hebrew and Arabic strings

before sending them to the terminal. In other words, the

bidirectional processing has to be done by the application and not

by xterm. The situation for Hebrew and Arabic improves over ISO

8859 at least in the form of the availability of precomposed

glyphs and presentation forms. It is far from clear at the

moment, whether bidirectional support should really go into

xterm and how precisely this should work. BothISO6429 = ECMA-

48 and the Unicode bidi algorithm provide alternative starting

points. See also ECMA Technical Report TR/53.

If you plan to support bidirectional text output in your application,

have a look at either Dov Grobgeld’s FriBidi or Mark Leisher’s

Pretty Good Bidi Algorithm, two free implementations of the

Unicode bidi algorithm.

Xterm currently does not support the Arabic, Syriac, or Indic text

formatting algorithms, although Robert Brady has published some

experimental patches towards bidi support. It is still unclear

whether it is feasible or preferable to do this in a VT100 emulator

at all. Applications can apply the Arabic and Hangul formatting

algorithms themselves easily, because xterm allows them to

output the necessary presentation forms. For Hangul, Unicode

contains the presentation forms needed for modern(post-1933)

Korean orthography. For Indic scripts, the X font mechanism at

the moment does not even support the encoding of the necessary

ligature variants, so there is little xterm could offer anyway.

Applications requiring Indic or Syriac output should better use a

proper Unicode X11 rendering library such as Pango instead of a

VT100 emulator like xterm.

Where do I find ISO 10646-1 X11 fonts?

Quite a number of Unicode fonts have become available for X11

over the past few months, and the list is growing quickly:

• Markus Kuhn together with a number of other volunteers

has extended the old -misc-fixed-*-iso8859-1 fonts

that come with X11 towards a repertoire that covers all

European characters(Latin, Greek, Cyrillic, intl. phonetic

alphabet, mathematical and technical symbols, in some

fonts even Armenian, Georgian, Katakana, Thai, and

more). For more information see the Unicode fonts and

tools for X11 page. These fonts are now also distributed

with XFree86 4.0.1 or higher.

• Markus has also prepared ISO10646-1 versions of all the

Adobe and B&H BDF fonts in the X11R6.4distribution.

These fonts already contained the full PostScript font

repertoire (around 30 additional characters, mostly those

used also by CP1252 MS-Windows, e.g. smart quotes,

dashes, etc.), which were however not available under the

ISO 8859-1 encoding. They are no wall accessible in the

ISO 10646-1 version, along with many additional

precomposed characters covering ISO 8859-

1,2,3,4,9,10,13,14,15. These fonts are now also

distributed with XFree86 4.1 or higher.

• XFree86 4.0 comes with an integrated TrueType font engine

that can make available any Apple/Microsoft font to your X

application in the ISO 10646-1 encoding.

• Some future XFree86 release might also remove most old

BDF fonts from the distribution and replace them with ISO

10646-1 encoded versions. The X server will be extended

with an automatic encoding converter that creates other

font encodings such as ISO 8859-* from the ISO 10646-1

font file on-the-fly when such a font is requested by old 8-

bit software. Modern software should preferably use the

ISO10646-1 font encoding directly.

• ClearlyU(cu12) is a 12 point, 100 dpi proportional ISO

10646-1 BDF font for X11 with over 3700 characters by

Mark Leisher (example images).

• The Electronic Font Open Laboratory in Japan is also working

on a family of Unicode bitmap fonts.

• Dmitry Yu. Bolkhovityanov created a Unicode VGA font in

BDF for use by text mode IBM PC emulators etc.

• Roman Czyborra’s GNU Unicode font project works on

collecting a complete and free8×16/16×16 pixel Unicode

font. It currently covers over 34000characters.

• etl-unicode is an ISO 10646-1 BDF font prepared by Primoz

Peterlin.

• Primoz Peterlin has also started the freefont project, which

extends to better UCS coverage some of the 35 core

PostScript outline fonts that URW++ donated to the

ghostscript project, with the help of pfaedit.

• George Williams has created a Type1Unicode font family,

which is also available in BDF. He also developed the

PfaEdit PostScript and bitmap font editor.

• EversonMono is a shareware monospaced font with over

3000 European glyphs, also available from the DKUUG

server.

• Birger Langkjer has prepared a Unicode VGA Console Font

for Linux.

• Alan Wood has a list of Microsoft fonts that support various

Unicode ranges.

• CODE2000is a Unicode font by James Kass.

Unicode X11 font names end with -ISO10646-1. This is now the

officially registered value for the X Logical Font Descriptor (XLFD)

fields CHARSET_REGISTRY and CHARSET_ENCODING for all

Unicode and ISO 10646-1 16-bit fonts. The*-ISO10646-1 fonts

contain some unspecified subset of the entire Unicode character

set, and users have to make sure that whatever font they select

covers the subset of characters needed by them.

The *-ISO10646-1 fonts usually also specify a DEFAULT_CHAR

value that points to a special non-Unicode glyph for representing

any character that is not available in the font(usually a dashed

box, the size of an H, located at 0x00). This ensures that users at

least see clearly that there is an unsupported character. The

smaller fixed-width fonts such as 6x13 etc. for xterm will never

be able to cover all of Unicode, because many scripts such as

Kanji can only be represented in considerably larger pixel sizes

than those widely used by European users. Typical Unicode fonts

for European usage will contain only subsets of between 1000

and 3000characters, such as the CEN MES-3repertoire.

You might notice that in the *-ISO10646-1 fonts the shapes of

the ASCII quotation marks has slightly changed to bring them in

line with the standards and practice on other platforms.

What are the issues related to UTF-8 terminal

emulators?

VT100 terminal emulators accept ISO2022 (=ECMA-35)ESC

sequences in order to switch between different character sets.

UTF-8 is in the sense of ISO 2022 an “other coding system” (see

section 15.4 of ECMA 35). UTF-8 is outside the ISO

2022SS2/SS3/G0/G1/G2/G3 world, so if you switch from ISO

2022 to UTF-8,all SS2/SS3/G0/G1/G2/G3 states become

meaningless until you leaveUTF-8 and switch back to ISO 2022.

UTF-8 is a stateless encoding, i.e. a self-terminating short byte

sequence determines completely which character is meant,

independent of any switching state. G0 and G1 in ISO 10646-1

are those of ISO 8859-1, and G2/G3 do not exist in ISO10646,

because every character has a fixed position and no switching

takes place. With UTF-8, it is not possible that your terminal

remains switched to strange graphics-character mode after you

accidentally dumped a binary file to it. This makes a terminal in

UTF-8 mode much more robust than with ISO 2022 and it is

therefore useful to have a way of locking a terminal into UTF-8

mode such that it cannot accidentally go back to the ISO 2022

world.

The ISO 2022 standard specifies a range of ESC % sequences for

leaving the ISO 2022 world (designation of other coding system,

DOCS),and a number of such sequences have been registered for

UTF-8 in section 2.8 of the ISO 2375 International Register of

Coded Character Sets:

• ESC %G activates UTF-8 with an unspecified implementation

level from ISO 2022 in a way that allows to go back to ISO

2022 again.

• ESC %@ goes back from UTF-8 to ISO 2022 in caseUTF-8

had been entered via ESC %G.

• ESC %/G switches to UTF-8 Level 1 with no return.

• ESC %/H switches to UTF-8 Level 2 with no return.

• ESC %/I switches to UTF-8 Level 3 with no return.

While a terminal emulator is in UTF-8 mode, any ISO 2022

escape sequences such as for switching G2/G3 etc. are ignored.

The only ISO2022 sequence on which a terminal emulator might

act in UTF-8 mode is ESC %@ for returning from UTF-8 back to

the ISO 2022scheme.

UTF-8 still allows you to use C1 control characters such as CSI,

even though UTF-8 also uses bytes in the range 0x80-0x9F. It is

important to understand that a terminal emulator in UTF-8 mode

must apply the UTF-8 decoder to the incoming byte stream

before interpreting any control characters. C1characters are

UTF-8 decoded just like any other character aboveU+007F.

Many text-mode applications available today expect to speak to

the terminal using a legacy encoding or to use ISO 2022

sequences for switching terminal fonts. In order to use such

applications within aUTF-8 terminal emulator, it is possible to use

a conversion layer that will translate between ISO 2022 and UTF-

8 on the fly. Examples for such utilities are Juliusz Chroboczek’s

luit and pluto. If all you need is ISO 8859 support in a UTF-8

terminal, you can also use screen(version 4.0 or newer) by

Michael Schröder and Jürgen Weigert. As implementation of ISO

2022 is a complex and error-prone task, better avoid

implementing ISO 2022 yourself. Implement only UTF-8 and

point users who need ISO 2022 at luit (or screen).

What UTF-8 enabled applications are

available?

Warning: As of mid-2003, this section is becoming increasingly

incomplete. UTF-8 support is now a pretty standard feature for

most well-maintained packages. This list will soon have to be

converted into a list of the most popular programs that still have

problems withUTF-8.

Terminal emulation and communication

• xterm as shipped with XFree86 4.0 or higher works correctly

in UTF-8 locales if you use an *-iso10646-1 font. Just try it

with for example LC_CTYPE=en_GB.UTF-8 xterm -

fn'-Misc-Fixed-Medium-R-Normal--18-120-100-

100-C-90-ISO10646-1'.

• C-Kermit has supported UTF-8 as the transfer, terminal, and

file character set since version 7.0.

• mlterm is a multi-lingual terminal emulator that supports

UTF-8 among many other encodings, combining

characters, XIM.

• Edmund Grimley Evans extended the BOGL Linux

framebuffer graphics library with UCS font support and

built a simpleUTF-8 console terminal emulator called

bterm with it.

• Uterm purports to be a UTF-8 terminal emulator for the

Linux framebuffer console.

• Pluto,Juliusz Chroboczek’s paranormal Unicode converter,

can guess which encoding is being used in a terminal

session, and converts it on-the-fly to UTF-8. (Wonderful

for reading IRC channels with mixed ISO 8859 and UTF-8

messages!)

Editing and word processing

• Vim (the popular clone of the classic vi editor) supports UTF-

8 with wide characters and up to two combining characters

starting from version 6.0.

• Emacs has quite good basic UTF-8 support starting from

version 21.3. Emacs 23 changed the internal encoding to

UTF-8.

• Yudit is Gaspar Sinai’s free X11 Unicode editor.

• Mined 2000 by Thomas Wolff is a very nice UTF-8 capable

text editor, ahead of the competition with features such as

not only support of double-width and combining

characters, but also bidirectional scripts, keyboard

mappings for a wide range of scripts, script-dependent

highlighting, etc.

• JOE is a popular WordStar-like editor that supports UTF-8 as

of version 3.0.

• Cooledit offersUTF-8 and UCS support starting with version

3.15.0.

• QEmacs is a small editor for use on UTF-8 terminals.

• less is a popular plain-text file viewer that had UTF-8

support since version348. (Version 358 had a bug related

to the handling of UTF-8 characters and backspace

underlining/boldification as used by nroff/man, for which a

patch is available, version 381 still has problems with UTF-

8 characters in the search-mode input line.)

• GNU bash and readline provide single-line editors and they

introduced support for multi-byte character encodings,

such as UTF-8, with versions bash 2.05b and readline 4.3.

• gucharmap and UMap are tools to select and paste any

Unicode character into your application.

• LaTeX has supportedUTF-8 in its base package since March

2004(still experimental). You can simply write

\usepackage[utf8]{inputenc} and then encode at

least some of TeX’s standard character repertoire in UTF-8

in your LaTeX sources. (Before that, UTF-8 was already

available in the form of Dominique Unruh’s package, which

covered far more characters and was rather resource

hungry.) XeTeX is a reengineered version of TeX that

reads and understands (UTF-8 encoded) Unicode text.

• Abiword.

Programming

• Perl offers useable Unicode andUTF-8 support starting with

version 5.8.1. Strings are now tagged in memory as either

byte strings or character strings, and the latter are stored

internally as UTF-8 but appear to the programmer just as

sequences of UCS characters. There is now also

comprehensive support for encoding conversion and

normalization included. Read “man perluni intro” for

details.

• Python got Unicode support added in version 1.6.

• Tcl/Tk started using Unicode as its base character set with

version 8.1. ISO10646-1 fonts are supported in Tk from

version 8.3.3 or newer.

• CLISP can work with all multi-byte encodings (including

UTF-8) and with the functions char-width and string-

width there is an API comparable to wcwidth() and

wcswidth()available.

Mail and Internet

• The Mutt email client has worked since version 1.3.24 in

UTF-8 locales. When compiled and linked with ncursesw

(ncurses built with wide-character support), Mutt 1.3.x

works decently in UTF-8locales under UTF-8 terminal

emulators such as xterm.

• Exmh is a GUI frontend for the MH or nmh mail system and

partially supports Unicode starting with version 2.1.1 if

Tcl/Tk 8.3.3 or newer is used. To enable displaying UTF-8

email, make sure you have the *-iso10646-1 fonts

installed and add to .Xdefaults the line “exmh.mime

UCharsets: utf-8”. Much of the Exmh-internal MIME

charset-set mechanics however still dates from the days

before Tcl8.1, therefore ignores Tcl/Tk’s more recent

Unicode support, and could now be simplified and

improved significantly. In particular, writing or replying to

UTF-8 mail is still broken.

• Most modern web browsers such as Mozilla Firefox have

pretty decentUTF-8 support today.

• The popular Pine email client lacks UTF-8 support and is no

longer maintained. Switch to its successor Alpine, a

complete reimplementation by the same authors, which

has excellentUTF-8 support.

Printing

• Cedilla is Juliusz Chroboczek’s best-effort Unicode to

PostScript text printer.

• Markus Kuhn’s hpp is a very simple plain text formatter for

HP PCL printers that supports the repertoire of characters

covered by the standard PCL fixed-width fonts in all the

character encodings for which your C library has a locale

mapping. Markus Kuhn’s utf2ps is a nearly quick-and-dirty

proof-of-concept UTF-8 formatter for PostScript, that was

only written to demonstrate which character repertoire can

easily be printed using only the standard PostScript fonts

and was never intended to be actually used.

• Some post-2004 HP printers have UTF-8PCL firmware

support(more).The relevant PCL5 commands appear to be

“␛&t1008P” (encoding method: UTF-8) and “␛(18N”

(Unicode code page). Recent PCL printers from other

manufacturers (e.g., Kyocera) also advertiseUTF-8 support

(for SAP compatibility).

• The Common UNIX Printing System comes with a texttops

tool that converts plaintext UTF-8 to PostScript.

• txtbdf2psby Serge Winitzki is a Perl script to print UTF-8

plaintext to PostScript using BDF pixel fonts.

Misc

• The PostgreSQL DBMS had support for UTF-8 since version

7.1, both as the frontend encoding, and as the backend

storage encoding. Data conversion between frontend and

backend encodings is performed automatically.

• FIGlet is a tool to output banner text in large letters using

mono spaced characters as block graphics elements and

added UTF-8 support in version 2.2.

• Charlint is a character normalization tool for the W3C

character model.

• The first available UTF-8 tools for Unix came out of the Plan

9 project, Bell Lab’s Unix successor and the world’s first

operating system usingUTF-8. Plan 9’s Sam editor and

9termterminal emulator have also been ported to Unix.

Wily started out as a Unix implementation of the Plan 9

Acme editor and is a mouse-oriented, text-based working

environment for programmers. More recently the Plan 9

from User Space (akaplan9port) package has emerged, a

port of many Plan 9 programs from their native Plan 9

environment to Unix-like operating systems.

• The Gnumeric spreadsheet is fully Unicode based from

version 1.1.

• The Heirloom Toolchest is a collection of standard Unix

utilities derived from original Unix material released as

open source by Caldera with support for multibyte

character sets, especially UTF-8.

• convmv is a tool to convert the filenames in entire directory

trees from a legacy encoding to UTF-8.

What patches to improve UTF-8 support are

available?

Many of these already have been included in the respective main

distribution.

• The Advanced Utility Development subgroup of the

OpenI18N(formerly Li18nux) project have prepared

various internationalization patches for tools such as cut,

fold, glibc, join, sed, uniq, xterm, etc. that might improve

UTF-8 support.

• A collection of UTF-8 patches for various tools as well as a

UTF-8support status list is in Bruno Haible’s Unicode-

HOWTO.

• Bruno Haible has also prepared various patches for stty, the

Linux kernel tty, etc.

• The multilingualization patch (w3m-m17n) for the text-

mode web browser w3m allows you to view documents in

all the common encodings on a UTF-8 terminal like

xterm(also switch option “Use alternate expression with

ASCII for entity ”to OFF after pressing “o”). Another

multilingual version (w3mmee) is available as well (have

not tried that yet).

Are there free libraries for dealing with Unicode

available?

• Ulrich Drepper’s GNU Clibrary glibc has featured since

version 2.2 full multi-byte locale support for UTF-8, an ISO

ISO 14651 sorting order algorithm, and it can recode into

many other encodings. All current Linux distributions come

with glibc 2.2 or newer, so you definitely should upgrade

now if you are still using an earlier Linux C library.

• The International Components for Unicode (ICU) (formerly

IBM Classes for Unicode) have become what is probably

the most powerful cross-platform standard library for more

advanced Unicode character processing functions.

• X.Net’s xIUA is a package designed to retrofit existing code

for ICU support by providing locale management so that

users do not have to modify internal calling interfaces to

pass locale parameters. It uses more familiar APIs, for

example to collate you use xiua_strcoll, and is thread safe.

• Mark Leisher’s UCData Unicode character property and bidi

library as well as his wchar_t support test code.

• Bruno Haible’s libiconv character-set conversion library

provides an iconv() implementation, for use on systems

which do not have one, or whose implementation cannot

convert from/to Unicode.

It also contains the libcharset character-encoding query

library that allows applications to determine in a highly

portable way the character encoding of the current locale,

avoiding the portability concerns of using

nl_langinfo(CODESET) directly.

• Bruno Haible’slibutf8 provides various functions for handling

UTF-8 strings, especially for platforms that do not yet offer

proper UTF-8 locales.

• Tom Tromey’s libunicode library is part of the Gnome

Desktop project, but can be built independently of Gnome.

It contains various character class and conversion

functions. (CVS)

• FriBidi is Dov Grobgeld’s free implementation of the Unicode

bidi algorithm.

• Markus Kuhn’s free wcwidth()implementation can be used

by applications on platforms where the C library does not

yet provide an equivalent function to find, how many

column positions a character or string will occupy on a

UTF-8terminal emulator screen.

• Markus Kuhn’s transtab is a transliteration table for

applications that have to make a best-effort conversion

from Unicode to ASCII or some 8-bit character set. It

contains a comprehensive list of substitution strings for

Unicode characters, comparable to the fallback notations

that people use commonly in email and on typewriters to

represent unavailable characters. The table comes in

ISO/IEC TR 14652 format, to allow simple inclusion into

POSIX locale definition files.

What is the status of Unicode support for

various X widget libraries?

• The Pango – Unicode and Complex Text Processing project

added full-featured Unicode support to GTK+.

• Qt supported the use of*-ISO10646-1 fonts since version

2.0.

• A UTF-8 extension for the Fast Light Tool Kit was prepared

by Jean-Marc Lienher, based on his Xutf8 Unicode display

library.

What packages with UTF-8 support are

currently under development?

• Native Unicode support is planned for Emacs 23. If you are

interested in contributing/testing, please join the emacs-

devel @gnu.org mailing list.

• The Linux Console Project works on a complete revision of

the VT100 emulator built into the Linux kernel, which will

improve the simplistic UTF-8 support already there.

How does UTF-8 support work under Solaris?

Starting with Solaris 2.8, UTF-8 is at least partially supported. To

use it, just set one of the UTF-8 locales, for instance by typing

 setenv LANG en_US.UTF-8

in a C shell.

Now the dtterm terminal emulator can be used to input and

output UTF-8 text and the mp print filter will printUTF-8 files on

PostScript printers. The en_US.UTF-8locale is at the moment

supported by Motif and CDE desktop applications and libraries,

but not by OpenWindows, XView, and OPENLOOK DeskSet

applications and libraries.

For more information, read Sun’s Overview of en_US.UTF-8

Locale Support web page.

Can I use UTF-8 on the Web?

Yes. There are two ways in which a HTTP server can indicate to a

client that a document is encoded in UTF-8:

• Make sure that the HTTP header of a document contains the

line

• Content-Type: text/html; charset=utf-8

if the file is HTML, or the line
 Content-Type: text/plain; charset=utf-8

if the file is plain text. How this can be achieved depends

on your web server. If you use Apache and you have a

subdirectory in which all *.html or *.txt files are encoded

in UTF-8, then create there a file .htaccess and add to it

the two lines
 AddType text/html;charset=UTF-8 html

 AddType text/plain;charset=UTF-8 txt

A webmaster can modify /etc/httpd/mime.types to make

the same change for all subdirectories simultaneously.

• If you cannot influence the HTTP headers that the web

server prefixes to your documents automatically, then add

in a HTML document under HEAD the element

• <META http-equiv=Content-Type content="text/html; charset=UTF-8">

which usually has the same effect. This obviously works

only for HTML files, not for plain text. It also announces

the encoding of the file to the parser only after the parser

has already started to read the file, so it is clearly the less

elegant approach.

The currently most widely used browsers support UTF-8 well

enough to generally recommend UTF-8 for use on web pages. The

old Netscape 4browser used an annoyingly large single font for

displaying any UTF-8document. Best upgrade to Mozilla, Netscape

6 or some other recent browser (Netscape 4 is generally very

buggy and not maintained anymore).

There is also the question of how non-ASCII characters entered

into HTML forms are encoded in the subsequent HTTP GET or

POST request that transfers the field contents to a CGI script on

the server. Unfortunately, both standardization and

implementation are still a huge mess here, as discussed in the

FORM submission and i18n tutorial by Alan Flavell. We can only

hope that a practice of doing all this in UTF-8 will emerge

eventually. See also the discussion about Mozilla bug18643.

How are PostScript glyph names related to

UCS codes?

See Adobe’s Unicode and Glyph Names guide.

Are there any well-defined UCS subsets?

With over 40000 characters, the design of a font that covers

every single Unicode character is an enormous project, not just

regarding the number of glyphs that need to be created, but also

in terms of the calligraphic expertise required to do an adequate

job for each script. As a result, there are hardly any fonts that try

to cover “all of Unicode”. While a few projects have attempted to

create single complete Unicode fonts, their quality is not

comparable with that of many good smaller fonts. For example,

the Unicode and ISO 10646 books are still printed using a large

collection of different fonts that only together cover the entire

repertoire. Any high-quality font can only cover the Unicode

subset for which the designer feels competent and confident.

Older, regional character encoding standards defined both an

encoding and a repertoire of characters that an individual

calligrapher could handle. Unicode lacks the latter, but in the

interest of interoperability, it is useful to have defined a hand full

of standardized subsets, each a few hundred to a few thousand

character large and targeted at particular markets, that font

designers could practically aim to cover. A number of different

UCS subsets already have been established:

• The Windows Glyph List 4.0 (WGL4) is a set of 650

characters that covers all the 8-bit MS-DOS, Windows,

Mac, and ISO code pages that Microsoft had used before.

All Windows fonts now cover at least the WGL4

repertoire.WGL4 is a superset of CEN MES-1. (WGL4

testfile).

• Three European UCS subsets MES-1, MES-2, and MES-3

have been defined by the European standards committee

CEN/TC304 in CWA 13873:

� MES-1 is a very small Latin subset with only 335

characters. It contains exactly all characters found in

ISO 6937 plus the EURO SIGN. This means MES-1

contains all characters of ISO 8859

parts1,2,3,4,9,10,15. [Note: If your aim is to provide

only the cheapest and simplest reasonable Central

European UCS subset, I would implementMES-1 plus

the following important 14 additional characters

found in Windows code page 1252 but not in MES-1:

U+0192, U+02C6, U+02DC,U+2013, U+2014,

U+201A, U+201E, U+2020, U+2021, U+2022,

U+2026,U+2030, U+2039, U+203A.]

� MES-2 is a Latin/Greek/Cyrillic/Armenian/Georgian

subset with 1052characters. It covers every language

and every 8-bit code page used in Europe (not just

the EU!) and European language countries. It also

adds a small collection of mathematical symbols for

use in technical documentation. MES-2 is a superset

of MES-1. If you are developing only for a European

or Western market, MES-2 is the recommended

repertoire. [Note: For bizarre committee-politics

reasons, the following eight WGL4 characters are

missing from MES-2: U+2113,U+212E, U+2215,

U+25A1, U+25AA, U+25AB, U+25CF, U+25E6. If

you implement MES-2, you should definitely also add

those and then you can claim WGL4 conformance in

addition.]

� MES-3 is a very comprehensive UCS subset with 2819

characters. It simply includes every UCS collection

that seemed of potential use to European users. This

is for the more ambitious implementors. MES-3 is a

superset of MES-2 and WGL4.

• JIS X 0221-1995 specifies 7 non-overlapping UCS subsets

for Japanese users:

� Basic Japanese (6884 characters): JIS X 0208-1997,

JIS X 0201-1997

� Japanese Non-ideographic Supplement (1913

characters): JIS X0212-1990 non-kanji, plus various

other non-kanji

� Japanese Ideographic Supplement 1 (918 characters):

some JIS X0212-1990 kanji

� Japanese Ideographic Supplement 2 (4883

characters): remaining JISX 0212-1990 kanji

� Japanese Ideographic Supplement 3 (8745

characters): remaining Chinese characters

� Full-width Alphanumeric (94 characters): for

compatibility

� Half-width Katakana (63 characters): for compatibility

• The ISO 10646 standard splits up its repertoire into a

number of collections that can be used to define and

document implemented subsets. Unicode defines similar,

but not quite identical, blocks of characters, which

correspond to sections in the Unicode standard.

• RFC 1815 is a memo written in 1995 by someone who

obviously did not like ISO 10646and was unaware of JIS X

0221-1995. It discusses a UCS subset called“ISO-10646-J-

1” consisting of 14 UCS collections, some of which are

intersected with JIS X 0208. This is just what a particular

font in an old Japanese Windows NT version from 1995

happened to implement. RFC1815 is completely obsolete

and irrelevant today and should best be ignored.

• Markus Kuhn has defined in the ucs-fonts.tar.gz README

three UCS subsets TARGET1, TARGET2, TARGET3 that are

sensible extensions of the corresponding MES subsets and

that were the basis for the completion of this xterm font

package.

Markus Kuhn’s uniset Perl script allows convenient set arithmetic

over UCS subsets for anyone who wants to define a new one or

wants to check coverage of an implementation.

What issues are there to consider when

converting encodings

The Unicode Consortium maintains a collection of mapping tables

between Unicode and various older encoding standards. It is

important to understand that the primary purpose of these tables

was to demonstrate that Unicode is a superset of the mapped

legacy encodings, and to document the motivation and origin

behind those Unicode characters that were included into the

standard primarily for round-trip compatibility reasons with older

character sets. The implementation of good character encoding

conversion routines is a significantly more complex task than just

blindly applying these example mapping tables! This is because

some character sets distinguish characters that others unify.

The Unicode mapping tables alone are to some degree well suited

to directly convert text from the older encodings to Unicode.

High-end conversion tools nevertheless should provide interactive

mechanisms, where characters that are unified in the legacy

encoding but distinguished in Unicode can interactively or semi-

automatically be disambiguated on a case-by-case basis.

Conversion in the opposite direction from Unicode to a legacy

character set requires non-injective (= many-to-one) extensions

of these mapping tables. Several Unicode characters have to be

mapped to a single code point in many legacy encodings. The

Unicode consortium currently does not maintain standard many-

to-one tables for this purpose and does not define any standard

behavior of coded character set conversion tools.

Here are some examples for the many-to-one mappings that

have to be handled when converting from Unicode into something

else:

UCS characters
equivalent
character

in target
code

U+00B5 MICRO SIGN

U+03BC GREEK SMALL LETTER MU

0xB5 ISO 8859-

1

U+00C5 LATIN CAPITAL LETTER A

WITH RING ABOVE

U+212B ANGSTROM SIGN

0xC5 ISO 8859-

1

U+03B2 GREEK CAPITAL LETTER

BETA

U+00DF LATIN SMALL LETTER

SHARP S

0xE1 CP437

U+03A9 GREEK CAPITAL LETTER

OMEGA

U+2126 OHM SIGN

0xEA CP437

U+03B5 GREEK SMALL LETTER

EPSILON

U+2208 ELEMENT OF

0xEE CP437

U+005C REVERSE SOLIDUS

U+FF3C FULLWIDTH REVERSE

SOLIDUS

0x2140 JIS X

0208

A first approximation of such many-to-one tables can be

generated from available normalization information, but these

then still have to be manually extended and revised. For

example, it seems obvious that the character 0xE1 in the original

IBM PC character set was meant to be useable as both a Greek

small beta (because it is located between the code positions for

alpha and gamma) and as a German sharp-s character (because

that code is produced when pressing this letter on a German

keyboard). Similarly 0xEE can be either the mathematical

element-of sign, as well as a small epsilon. These characters are

not Unicode normalization equivalents, because although they

look similar in low-resolution video fonts, they are very different

characters in high-quality typography. IBM’s tables for CP437

reflected one usage in some cases, Microsoft’s the other, both

equally sensible. A good code converter should aim to be

compatible with both, and not just blindly use the Microsoft

mapping table alone when converting from Unicode.

The Unicode database does contain in field 5 the Character

Decomposition Mapping that can be used to generate some of the

above example mappings automatically. As a rule, the output of a

Unicode-to-Something converter should not depend on whether

the Unicode input has first been converted into Normalization

FormC or not. For equivalence information on Chinese, Japanese,

and Korean Han/Kanji/Hanja characters, use the Unihan

database. In the cases of the IBM PC characters in the above

examples, where the normalization tables do not offer adequate

mapping, the cross-references to similar looking characters in the

Unicode book area valuable source of suggestions for equivalence

mappings. In the end, which mappings are used and which not is

a matter of taste and observed usage.

The Unicode consortium used to maintain mapping tables to CJK

character set standards, but has declared them to be obsolete,

because their presence on the Unicode web server led to the

development of a number of inadequate and naive EUC

converters. In particular, the (now obsolete) CJK Unicode

mapping tables had to be slightly modified sometimes to preserve

information in combination encodings. For example, the standard

mappings provide round-trip compatibility for conversion chains

ASCII to Unicode to ASCII as well as for JIS X 0208to Unicode to

JIS X 0208. However, the EUC-JP encoding covers the union of

ASCII and JIS X 0208, and the UCS repertoire covered by the

ASCII and JIS X 0208 mapping tables overlaps for one character,

namelyU+005C REVERSE SOLIDUS. EUC-JP converters therefore

have to use a slightly modified JIS X 0208 mapping table, such

that the JIS X 0208code 0x2140 (0xA1 0xC0 in EUC-JP) gets

mapped to U+FF3C FULLWIDTHREVERSE SOLIDUS. This way,

round-trip compatibility from EUC-JP to Unicode to EUC-JP can be

guaranteed without any loss of information. Unicode Standard

Annex #11: East Asian Width provides further guidance on this

issue. Another problem area is compatibility with older conversion

tables, as explained in an essay by Tomohiro Kubota.

In addition to just using standard normalization mappings,

developers of code converters can also offer transliteration

support. Transliteration is the conversion of a Unicode character

into a graphically and/or semantically similar character in the

target code, even if the two are distinct characters in Unicode

after normalization. Examples of transliteration:

UCS characters
equivalent
character

in target
code

U+0022 QUOTATION MARK

U+201C LEFT DOUBLE QUOTATION

MARK

U+201D RIGHT DOUBLE QUOTATION

MARK

U+201E DOUBLE LOW-9 QUOTATION

MARK

U+201F DOUBLE HIGH-REVERSED-9

QUOTATION MARK

0x22 ISO 8859-

1

The Unicode Consortium does not provide or maintain any

standard transliteration tables at this time. CEN/TC304 has a

draft report “European fallback rules” on recommended ASCII

fallback characters forMES-2 in the pipeline, but this is not yet

mature. Which transliterations are appropriate or not can in some

cases depend on language, application field, and most of all

personal preference. Available Unicode transliteration tables

include, for example, those found in Bruno Haible’s libiconv, the

glibc 2.2 locales, and Markus Kuhn’s transtab package.

Is X11 ready for Unicode?

The X11 R7.0 release(2005) is the latest version of the X

Consortium’s sample implementation of the X11 Window System

standards. The bulk of the current X11 standards and parts of the

sample implementation still pre-date widespread interest in

Unicode under Unix.

Among the things that have already been fixed are:

• Keysyms: Since X11R6.9, a keysym value has been

allocated for every Unicode character in Appendix A of the

X Window System Protocol specification. Any UCS

character in the range U-00000100to U-00FFFFFF can now

be represented by a keysym value in the

range0x01000100 to 0x01ffffff. This scheme was proposed

by Markus Kuhn in1998 and has been supported by a

number of applications for many years, starting with

xterm. The revised Appendix A now also contains an

official UCS cross reference column in its table of pre-

Unicode legacy keysyms.

• UTF-8 locales: The X11R6.8 sample implementation added

support for UTF-8 locales.

• Fonts: A number of comprehensive Unicode standard fonts

were added in X11R6.8, and they are now supported by

some of the classic standard tools, such as xterm.

There remain a number of problems in the X11 standards and

some inconveniences in the sample implementation for Unicode

users that still need to be fixed in one of the next X11 releases:

• UTF-8 cut and paste: The ICCCM standard still does not

specify how to transfer UCS strings in selections. Some

vendors have added UTF-8 as yet another encoding to the

existing COMPOUND_TEXT mechanism (CTEXT). This is

not a good solution for at least the following reasons:

� CTEXT is a rather complicated ISO 2022 mechanism

and Unicode offers the opportunity to provide not just

another add-on to CTEXT, but to replace the entire

monster with something far simpler, more

convenient, and equally powerful.

� Many existing applications can communicate selections

via CTEXT, but do not support a newly added UTF-8

option. A user of CTEXT has to decide whether to use

the old ISO 2022 encodings or the new UTF-

8encoding, but both cannot be offered

simultaneously. In other words, adding UTF-8 to

CTEXT seriously breaks backwards compatibility with

existing CTEXT applications.

� The current CTEXT specification even explicitly forbids

the addition of UTF-8 in section 6: “ISO registered

‘other coding systems’ are not used in Compound

Text; extended segments are the only mechanism for

non-2022 encodings.”

Juliusz Chroboczek has written an Inter-Client Exchange of

Unicode Text draft proposal for an extension of the ICCCM

to handle UTF-8 selections with a newUTF8_STRING atom

that can be used as a property type and selection target.

This clean approach fixes all of the above

problems.UTF8_STRING is just as state-less and easy to

use as the existing STRING atom (which is reserved

exclusively for ISO 8859-1 strings and therefore not

usable for UTF-8), and adding a new selection target

allows applications to offer selections in both the old

CTEXT and the new UTF8_STRING format simultaneously,

which maximizes interoperability. The use of

UTF8_STRING can be negotiated between the selection

holder and requestor, leading to no compatibility issues

whatsoever. Markus Kuhn has prepared an ICCCM patch

that adds the necessary definition to the standard. Current

status: The UTF8_STRING atom has now been officially

registered with X.Org, and we hope for an update of the

ICCCM in one of the next releases.

• Application window properties: In order to assist the

window manager in correctly labeling windows, the ICCCM

2.0 specification requires applications to assign properties

such as WM_NAME, WM_ICON_NAME and

WM_CLIENT_MACHINE to each window. The old ICCCM 2.0

(1993) defines these to be of the polymorphic type TEXT,

which means that they can have their text encoding

indicated using one of the property types STRING (ISO

8859-1), COMPOUND_TEXT (a ISO 2022subset), or

C_STRING (unknown character set). Simply

addingUTF8_STRING as a new option for TEXT would

break backwards compatibility with old window managers

that do not know about this type. Therefore, the

freedesktop.org draft standard developed in the Window

Manager Specification Project adds new additional window

properties _NET_WM_NAME, _NET_WM_ICON_NAME, etc.

that have type UTF8_STRING.

• Inefficient font data structures: The Xlib API and X11

protocol data structures used for representing font metric

information are extremely inefficient when handling

sparsely populated fonts. The most common way of

accessing a font in an X client is a call to

XLoadQueryFont(), which allocates memory for an

XFontStruct and fetches its content from the server.

XfontStruct contains an array of XCharStruct entries (12

bytes each). The size of this array is the code position of

the last character minus the code position of the first

character plus one. Therefore, any“*-iso10646-1” font that

contains both U+0020 and U+FFFD will cause an

XCharStruct array with 65502 elements to be allocated

(even for CharCell fonts), which requires 786 kilobytes of

client-side memory and data transmission, even if the font

contains only a thousand characters.

A few workarounds have been used so far:

� The non-Asian -misc-fixed-*-iso10646-1 fonts

that come with XFree86 4.0 contain no characters

above U+31FF. This reduces the memory

requirement to 153 kilobytes, which is still bad, but

much less so. (There are actually many useful

characters above U+31FFpresent in the BDF files,

waiting for the day when this problem will be fixed,

but they currently all have an encoding of -1 and are

therefore ignored by the X server. If you need these

characters, then just install the original fonts without

applying the bdftruncate script).

� Starting with XFree86 4.0.3, the truncation of a BDF

font can also be done by specifying a character code

subrange at the end of the XLFD, as described in the

XLFD specification, section 3.1.2.12. For example,
� -Misc-Fixed-Medium-R-Normal--20-200-75-75-C-100-ISO10646-

1[0x1200_0x137f]

will load only the Ethiopic part of this BDF font with a

correspondingly nicely small XFontStruct. Earlier X

server versions will simply ignore the font subset

brackets and will give you the full font, so there is no

compatibility problem with using that.

� Bruno Haible has written a BIGFONT protocol extension

for XFree864.0, which uses a compressed

transmission of XCharStruct from server to client and

also uses shared memory in Xlib between several

clients which have loaded the same font.

These workarounds do not solve the underlying problem

that XFontStruct is unsuitable for sparsely populated fonts,

but they do provide a significant efficiency improvement

without requiring any changes in the API or client source

code. One real solution would be to extend or replace

XFontStruct with something slightly more flexible that

contains a sorted list or hash table of characters as

opposed to an array. This redesign of XFontStruct would at

the same time also allow the addition of the urgently

needed provisions for combining characters and ligatures.

Another approach would be to introduce a new font

encoding, which could be called for instance “ISO10646-C”

(the C stands for combining, complex, compact, or

character-glyph mapped, as you prefer). In this encoding,

the numbers assigned to each glyph are really font-specific

glyph numbers and are not equivalent to any UCS

character code positions. The information necessary to do

a character-to-glyph mapping would have to be stored in

to be standardized new properties. This new font encoding

would be used by applications together with a few efficient

C functions that perform the character-to-glyph code

mapping:

� makeiso10646cglyphmap(XFontStruct *font,

iso10646cglyphmap*map)

Reads the character-to-glyph mapping table from the

font properties into a compact and efficient in-

memory representation.

� freeiso10646cglyphmap(iso10646cglyphmap

*map)

Frees that in-memory representation.

� mbtoiso10646c(char *string,

iso10646cglyphmap *map, XChar2b*output)

wctoiso10646c(wchar_t *string,

iso10646cglyphmap *map,XChar2b *output)

These take a Unicode character string and convert it

into a XChar2b glyph string suitable for output by

XDrawString16 with the ISO10646-C font from

which the iso10646cglyphmap was extracted.

ISO10646-C fonts would still be limited to having not more

than 64kibiglyphs,but these can come from anywhere in

UCS, not just from the BMP. This solution also easily

provides for glyph substitution, such that we can finally

handle the Indic fonts. It solves the huge-XFontStruct

problem of ISO10646-1, as XFontStruct grows now

proportionally with the number of glyphs, not with the

highest characters. It could also provide for simple

overstriking combining characters, but then the glyphs for

combining characters would have to be stored with

negative width inside an ISO10646-C font. It can even

provide support for variable combining accent positions, by

having several alternative combining glyphs with accents

at different heights for the same combining character, with

the ligature substitution tables encoding which combining

glyph to use with which base character.

TODO: write specification for ISO10646-C properties, write

sample implementations of the mapping routines, and add

these to xterm, GTK, and other applications and libraries.

Any volunteers?

• Combining characters: The X11 specification does not

support combining characters in any way. The font

information lacks the data necessary to perform high-

quality automatic accent placement (as it is found, for

example, in all TeX fonts). Various people have

experimented with implementing simplest overstriking

combining characters using zero-width characters with ink

on the left side of the origin, but details of how to do this

exactly are unspecified(e.g., are zero-width characters

allowed in CharCell and Monospaced fonts?) and this is

therefore not yet widely established practice.

• Ligatures: The Indic scripts need font file formats that

support ligature substitution, which is at the moment just

as completely out of the scope of the X11 specification as

are combining characters.

Several XFree86 team members have worked on these issues.

X.Org, the official successor of the XConsortium and the Open

group as the custodian of the X11 standards and the sample

implementation, has taken over the results or is still considering

them.

With regard to the font related problems, the solution will

probably be to dump the old server-side font mechanisms entirely

and use instead XFree86’s new Xft. Another related work-in-

progress is Standard Type Services (ST)framework that Sun has

been working on.

What are useful Perl one-liners for working with

UTF-8?

These examples assume that you have Perl 5.8.1 or newer and

that you work in a UTF-8 locale (i.e., “locale charmap” outputs

“UTF-8”).

For Perl 5.8.0, option -C is not needed and the examples without -C will

not work in a UTF-8 locale. You really should no longer use Perl 5.8.0, as

its Unicode support had lots of bugs.

Print the euro sign (U+20AC) to stdout:

 perl -C -e 'print pack("U",0x20ac)."\n"'

 perl -C -e 'print "\x{20ac}\n"' # works only from U+0100

upwards

Locate malformed UTF-8 sequences:

 perl -ne '/^(([\x00-\x7f]|[\xc0-\xdf][\x80-\xbf]|[\xe0-\xef][\x80-

\xbf]{2}|[\xf0-\xf7][\x80-\xbf]{3})*)(.*)$/;print "$ARGV:$.:".($-

[3]+1).":$_" if length($3)'

Locate non-ASCII bytes:

 perl -ne '/^([\x00-\x7f]*)(.*)$/;print "$ARGV:$.:".($-[2]+1).":$_" if

length($2)'

Convert non-ASCII characters into SGML/HTML/XML-style decimal

numeric character references (e.g. Ş becomesŞ):

 perl -C -pe 's/([^\x00-\x7f])/sprintf("&#%d;", ord($1))/ge;'

Convert (hexa)decimal numeric character references to UTF-8:

 perl -C -pe 's/&\#(\d+);/chr($1)/ge;s/&\#x([a-fA-

F\d]+);/chr(hex($1))/ge;'

How can I enter Unicode characters?

There are a range of techniques for entering Unicode characters

that are not present by default on your keyboard.

Application-independent methods

• Copy-and-paste from a small file that lists your most

commonly used Unicode characters in a convenient and for

your needs suitably chosen arrangement. This is usually

the most convenient and appropriate method for relatively

rarely required very special characters, such as more

esoteric mathematical operators.

• Extend your keyboard mapping using xmodmap. This is

particularly convenient if your keyboard has an AltGr key,

which is meant for exactly this purpose (some US

keyboards have instead of AltGr just aright Alt key, others

lack that key entirely unfortunately, in which case some

other key must be assigned the Mode_switch function).

Write a file "~/.Xmodmap" with entries such as

• keycode 113 = Mode_switch Mode_switch

• keysym d = d NoSymbol degree NoSymbol

• keysym m = m NoSymbol emdash mu

• keysym n = n NoSymbol endash NoSymbol

• keysym 2 = 2 quotedbl twosuperior NoSymbol

• keysym 3 = 3 sterling threesuperior NoSymbol

• keysym 4 = 4 dollar EuroSign NoSymbol

• keysym space = space NoSymbol nobreakspace NoSymbol

• keysym minus = minus underscore U2212 NoSymbol

• keycode 34 = bracketleft braceleft leftsinglequotemark

leftdoublequotemark

• keycode 35 = bracketright braceright rightsinglequotemark

rightdoublequotemark

• keysym KP_Subtract = KP_Subtract NoSymbol U2212 NoSymbol

• keysym KP_Multiply = KP_Multiply NoSymbol multiply NoSymbol

• keysym KP_Divide = KP_Divide NoSymbol division NoSymbol

and load it with "xmodmap ~/.Xmodmap" from your X11

startup script into your X server. You will then find that

you get with AltGr easily the following new characters out

of your keyboard:

AltGr+d °

AltGr+ NBSP

AltGr+[‘

AltGr+] ’

AltGr+{ “

AltGr+} ”

AltGr+2 ²

AltGr+3 ³

AltGr+- −

AltGr+n –

AltGr+m —

AltGr+M µ

AltGr+keypad-/ ÷

AltGr+keypad-* ×

The above example file is meant for a UK keyboard, but

easily adapted to other layouts and extended with your

own choice of characters. If you use Microsoft Windows,

try Microsoft Keyboard Layout Creator to make similar

customizations.

• ISO 14755 defines a hexadecimal input method: Hold down

both the Ctrl and Shift key while typing the hexadecimal

Unicode number. After releasing Ctrl and Shift, you have

entered the corresponding Unicode character.

This is currently implemented in GTK+ 2, and works in

applications such as GNOME Terminal, Mozilla and Firefox.

Application-specific methods

• In VIM, type Ctrl-V u followed by a hexadecimal number.

Example: Ctrl-V u 20ac

• In Microsoft Windows, press the Alt key while typing the

decimal Unicode number with a leading zero on the

numeric keypad. Example: press-Alt 08364 release-Alt

• In Microsoft Word, type a hexadecimal number and then

press Alt+X to turn it into the corresponding Unicode

character. Example: 20ac Alt-X

Are there any good mailing lists on these

issues?

You should certainly be on the linux-

utf8@nl.linux.orgmailing list. That’s the place to meet for

everyone interested in working towards better UTF-8 support for

GNU/Linux or Unix systems and applications. To subscribe, send a

message to linux-utf8-request@nl.linux.org with the subject

subscribe. You can also browse the linux-utf8 archive and

subscribe from there via a web interface.

There is also the unicode@unicode.org mailing list, which is

the best way of finding out what the authors of the Unicode

standard and a lot of other gurus have to say. To subscribe, send

to unicode-request@unicode.orga message with the subject line

“subscribe” and the text “subscribe YOUR@EMAIL.ADDRESS

unicode”.

The relevant mailing list for discussions about Unicode support in

Xlib and the X server is now xorg at xorg.org. In the past, there

were also the fonts and i18n atxfree86.org mailing lists, whose

archives still contain valuable information.

Further references

• Bruno Haible’s Unicode HOWTO.

• The Unicode Standard, Version 5.0, Addison-Wesley, 2006.

You definitely should have a copy of the standard if you

are doing anything related to fonts and character sets.

• Ken Lunde’s CJKV Information Processing, O’Reilly &

Associates, 1999. This is clearly the best book available if

you are interested in East Asian character sets.

• Unicode Technical Reports

• Mark Davis’ Unicode FAQ

• ISO/IEC10646-1:2000

• Frank Tang’s Iñtërnâtiônàlizætiøn Secrets

• IBM’s Unicode Zone

• Unicode Support in the Solaris 7 Operating Environment

• The USENIX Winter 1993 paper by Rob Pike and Ken

Thompson on the introduction of UTF-8 under Plan 9

reports about the experience gained when Plan 9 migrated

as the first operating system back in 1992 completely to

UTF-8 (which was at the time still called UTF-2). A must

read!

• OpenI18N is a project initiated by several Linux distributors

to enhance Unicode support for free operating systems. It

published the OpenI18NGlobalization Specification, as well

as some patches.

• The Online Single Unix Specification contains definitions of

all the ISO C Amendment 1 function, plus extensions such

as wcwidth().

• The Open Group’s summary of ISOC Amendment 1.

• GNU libc

• The Linux Console Tools

• The Unicode Consortium character database and character

set conversion tables are an essential resource for anyone

developing Unicode related tools.

• Other conversion tables are available from Microsoft and

Keld Simonsen’s WG15 archive.

• Michael Everson’s Unicode and JTC1/SC2/WG2Archive

contains online versions of many of the more recent

ISO10646-1 amendments, plus many other goodies. See

also his Roadmaps to the Universal Character Set.

• An introduction into The Universal Character Set (UCS).

• Otfried Cheong’s essay on Han Unification in Unicode

• The AMS STIX project revised and extended the

mathematical characters for Unicode 3.2 and ISO 10646-

2. They are now preparing a freely available the STIX

Fonts family of fully hintedType1 and TrueType fonts,

covering the over 7700 characters needed for scientific

publishing in a “Times compatible” design.

• Jukka Korpela’s Soft hyphen (SHY) –a hard problem? is an

excellent discussion of the controversy surrounding

U+00AD.

• James Briggs’ Perl, Unicode and I18N FAQ.

• Mark Davis discusses in Forms of Unicode the tradeoffs

between UTF-8, UTF-16, and UCS-4 (now also called UTF-

32 for political reasons). Doug Ewell wrote A survey of

Unicode compression.

• Alan Wood has a good page on Unicode and Multilingual

Support in Web Browsers and HTML.

• ISO/JTC1/SC22/WG20 produced various Unicode related

standards such as the International String Ordering (ISO

14651) and the Cultural Convention Specification TR (ISO

TR 14652) (an extension of the POSIX locale format that

covers, for example, transliteration of wide character

output).

• ISO/JTC1/SC2/WG2/IRG(Ideographic Rapporteur Group)

• The Letter Database answers queries on languages,

character sets and names, as does the Zvon Character

Search.

• Vietnamese Unicode FAQs

• China has specified in GB 18030 a new encoding of UCS for

use in Chinese government systems that is backwards-

compatible with the widely used GB 2312 and GBK

encodings for Chinese. It seems though that the first

version(released 2000-03) is somewhat buggy and will

likely go through a couple more revisions, so use with

care. GB 18030 is probably more of a temporary migration

path to UCS and will probably not survive for long against

UTF-8 or UTF-16, even in Chinese government systems.

• Hong Kong Supplementary Character Set (HKSCS)

• Various people propose UCS alternatives: Rosetta, Bytext.

• Proceedings of the International Unicode Conferences:

ICU13, ICU14, ICU15, ICU16, ICU17, ICU18, etc.

• This FAQ has been translated into other languages:

� Korean: 2001-02

Be aware that each translation reflects only some past

version of this document, which I update several times per

month and revise more thoroughly once or twice each

year.

I add new material to this document quite frequently, so please

come back from time to time. Suggestions for improvement are

very welcome. Please help to spread the word in the free

software community about the importance of UTF-8.

Special thanks to Ulrich Drepper, Bruno Haible, Robert Brady,

Juliusz Chroboczek, Shuhei Amakawa, Jungshik Shi, Robert

Rogers, Roman Czyborra, Josef Hinteregger and many others for

valuable comments, and to SuSE GmbH, Nürnberg, for their past

support.

Markus Kuhn

